HOMEWORK 7 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 3.6: Derivatives of logarithmic functions

3.6.13.
$$g'(x) = \frac{1}{x\sqrt{x^2-1}} \left(\sqrt{x^2-1} + \frac{x^2}{\sqrt{x^2-1}}\right)$$

3.6.21. $y' = 2\log_{10}(\sqrt{x}) + 2x\frac{1}{\ln(10)\sqrt{x}} \times \frac{1}{2\sqrt{x}} = 2\log_{10}(\sqrt{x}) + \frac{1}{\ln(10)}$
3.6.39. $y' = \frac{\sin^2(x)\tan^4(x)}{(x^2+1)^2} \left(2\frac{\cos(x)}{\sin(x)} + 4\frac{\sec^2(x)}{\tan(x)} - \frac{x}{x^2+1}\right)$

Section 3.7: Rates of change in the natural and social sciences

- (a) $f'(t) = e^{-\frac{t}{2}} \frac{t}{2}e^{-\frac{t}{2}} = e^{-\frac{t}{2}}\left(1 \frac{t}{2}\right)$
- (b) $f'(3) = e^{-\frac{3}{2}} \left(-\frac{1}{2}\right)$
- (c) t = 2
- (d) When t < 2

(e)
$$f(2) - f(0) + f(2) - f(8) = 2e^{-1} - 0 + 2e^{-1} - 8e^{-4} = 4e^{-1} - 8e^{-4}$$

- (f) The particle is moving to the right between t = 0 and t = 2, and then to the left from t = 2 to t = 8.
- (g) $f''(t) = -\frac{1}{2}e^{-\frac{t}{2}}\left(1-\frac{t}{2}\right) + e^{-\frac{t}{2}}\left(-\frac{1}{2}\right) = e^{-\frac{t}{2}}\left(-\frac{1}{2}+\frac{t}{4}-\frac{1}{2}\right) = e^{-\frac{t}{2}}\left(\frac{t}{4}-1\right);$ $f''(3) = e^{-\frac{3}{2}}\left(-\frac{1}{4}\right)$
- (h) Use a calculator
- (i) Speeding up when f''(t) > 0 and f'(t) > 0 or when f''(t) < 0 and f'(t) < 0. But solving those equations reveals that **none** of the two situations can happen! Hence the particle is constantly slowing down!

3.7.10.

(a) First solve for v(t) = 0, where $v(t) = \frac{ds}{dt} = 80 - 32t$, you get $t = \frac{80}{32} = \frac{5}{2}$. So the **maximum height** s^* is $s^* = s(\frac{5}{2}) = 200 - 100 = 100$

(b) To find the time t when the ball is 96ft above the ground, we need to solve the equation s(t) = 96, and you get t = 2, 3, whence $v(2) = 80 - 32 \cdot 2 = 16 \frac{ft}{s}$ and $v(3) = 80 - 32 \cdot 3 = -16 \frac{ft}{s}$

Date: Friday, March 11th, 2011.

3.7.17. f'(x) = 6x = linear density at x. f'(1) = 6, f'(2) = 12, f'(3) = 18. The density is highest at 3 and lowest at 1.

3.7.24. See attached document 'Solution to 3.7.24'. You should get b = 6, a = 140, and the population goes to a = 140 (because the denominator goes to 1 as t goes to ∞)

3.7.29.

- (a) $C'(x) = 12 0.2x + 0.0015x^2$
- (b) C'(200) = 32; The cost of producing one more yard of a fabric once 200 yards have been produced
- (c) C(201) C(200) = 32.2005, which is pretty close to C'(200)

Section 3.8: Exponential growth and decay

3.8.4.

(a)
$$y(0) = C = 120$$

(b) $y(t) = 120e^{\frac{\ln(125)}{6}t} = 120(125)^{\frac{t}{6}} = 120\left(5^{\frac{t}{2}}\right)$
(c) $y(5) = 120 \times 5^{\frac{5}{2}} \approx 6708$
(d) $y'(5) = Ky(5) = \frac{\ln(125)}{6} \times 120 \times 5^{\frac{5}{2}} \approx 5398$
(e) $t = 2\frac{\ln(\frac{5000}{3})}{\ln(5)} \approx 9.21$

3.8.9.

(a)
$$y(t) = 100e^{\ln(\frac{1}{2})\frac{t}{30}} = 100 \left(\frac{1}{2}\right)^{\frac{1}{30}}$$

(b) $y(100) = 100 \left(\frac{1}{2}\right)^{\frac{100}{30}} \approx 9.92$
(c) $t = 30\frac{\ln(\frac{1}{100})}{\ln(\frac{1}{2})} \approx 199.3$

3.8.11. We know $Ce^{5730K} = \frac{C}{2}$ and $Ce^{Kt} = 0.74C$, and we need to solve for t. First of all, the first equation gives $e^{5730K} = \frac{1}{2}$, so $K = \frac{\ln(0.5)}{5730} \approx -0.000121$, and from the second equation, we get $e^{Kt} = 0.74$, so $Kt = \ln(0.74)$, so $t = \frac{\ln(0.74)}{\frac{\ln(0.5)}{5730}} \approx 2489$

3.8.19.

(a) (i) $3000 \left(1 + \frac{0.05}{1}\right)^{(1)(5)} \approx 3828$ (ii) $3000 \left(1 + \frac{0.05}{2}\right)^{(2)(5)} \approx 3840$ (iii) $3000 \left(1 + \frac{0.05}{12}\right)^{(12)(5)} \approx 3850$ (iv) $3000 \left(1 + \frac{0.05}{52}\right)^{(52)(5)} \approx 3851.61$ (v) $3000 \left(1 + \frac{0.05}{365}\right)^{(365)(5)} \approx 3852.01$ (vi) $3000e^{0.05(5)} \approx 3852.08$ (b) A' = 0.05A, A(0) = 3000

Section 3.9: Related rates

3.9.5.
$$\frac{dh}{dt} = \frac{3}{25\pi}$$
 (Use $V = \pi r^2 h$)
3.9.13.
$$\frac{d(x+y)}{dt} = \frac{25}{3}$$
 (use the law of similar triangles to get $\frac{x}{x+y} = \frac{3}{5}$)

 $\mathbf{2}$

3.9.15.
$$dD = 65mph$$
 (use the pythagorean theorem to conclude $D^2 = x^2 + y^2$)
3.9.27. $dh = \frac{6}{5\pi}$ (use the fact that $V = \frac{\pi}{12}h^3$ because $h = \frac{r}{2}$)
3.9.38. See attached document 'Solution to 3.9.38'. Use the definition of $\tan(\theta), -\frac{80\pi}{3}$

3.9.43. See attached document 'Solution to 3.9.43'. You should get $x' = \frac{7}{4}\sqrt{15}$